
Hayden Kendall

Prof. Jean-Yves Hervé

CSC 412: Operating Systems and Networks

21 September 2020

Final Programming Assignment

 While multiprocessing and threading have become incredibly useful tools in computer science, a

significant dilemma can still occur. This is known as a deadlock. A deadlock is an issue related to

synchronization and resource sharing. Most often when concurrent activity disallows each other from

continuation. In this situation, processes cannot communicate with the main thread, with each other,

and themselves. Deadlock prevention strategies are implemented to make these situations impossible

to occur and often can be narrowed down to four conditions. In this project, a simulation is constructed

to display the implications of such a situation.

 The simulation that was created consists of a similar grid used in the last project. Depending on

the parameters provided by the user, robots, boxes, and doors will be created on the screen. Each

fulfilling a designated grid space. It is up to the robots to push their assigned boxes to the doors and

terminate. Robots may only push from the opposite direction of the box. One must push from the left

side of the box to move it East. Boxes and robots may not occupy the same grid space as one another.

This was achieved by creating a two-dimensional array of mutex locks that are associated with each grid

square. The results of this are robot threads assigned to complete their job without mutual exclusion,

and in some cases form a deadlock.

 Robots are defined as a struct within the C header files. The objective of this design was so that

robots could be viewed as physical entities that had properties to be adjusted. It was also determined

that the box assignment should be stored by the robot and not as a separate entity. I decided on doing

this because the robots are entirely dependent on the location of the box. I say this because the box

needs to exist for the robot to have a purpose, but also for the fact that initial movement is dependent

on the box location itself. In addition to that, all robots are assigned to their own unique box. The doors

are their own separate entities because multiple robots will need to congregate at any specific door.

Doors follow a similar data structure to store attributes.

 A grid space map is also implemented at the beginning of the program. This is to allow the

program to have an accurate view of the grid. When the doors are created and put on the grid, the grid

space changes from a zero to a one. All grid spaces are set to zero until an entity occupies it. In the

program I use this grid space for preventing grid overlap at creation, but also for detecting deadlock. An

array of robots is iteratively created in the initialization stage of the program where the location is

determined based on the grid and assigns the box location. Immediately following that, the program is

multithreaded when the operation function of the robot is called.

 The operation function of the robot is what centralizes the steps needed for the objective to be

completed. A series of sub-functions are called to move, orient, push, and terminate the robot. Another

important design decision was the use of modularity. It makes much more sense to designate each stage

of the robot as a sub-function and allow other sub-functions to recycle code. An example of this is the

initial approach box function. This function simply takes a delta x-coordinate and delta y-coordinate to

moves the robot to the new location. Since this function is dependent on parameters and is general

purpose, the function gets reused many times to complete other stages of the objective. By modulating

the code, we can reduce repetitive calculations and give the software an overall simpler design. At each

step of the robot, a mutex lock is used so that the designated robot thread can write what they did in

the simulation and produce the text file with the “robot program”.

 As mentioned earlier, the main learning objective of this project was to further understand the

concept of deadlock. As the number of robots increases, we see a stronger likelihood of deadlock

occurring. In the book Operating Systems: Concepts and Applications by Donald Horner, we can

determine that deadlock occurs due to four conditions. These are mutual exclusions, hold-and-wait, no

preemption, and circular wait. It is factual that these four conditions do get met in the program and are

therefore resulting in the issue. The question to solve the detection problem was difficult but my

solution resulted in utilizing the grid space map further. Not only can we set zeros and ones to grid

spaces to determine if they are occupied, but also to store important data like what direction the grid

space last moved from and what type of entity it is. At each move, another singular mutex lock is

activated to analyze the grid space based on a robot’s next move. If on the move, code can be

implemented to detect if a deadlock will occur based on collision with other boxes or travelers. Solutions

were not accounted for as the assignment did not specify to solve them.

 In terms of solving the actual deadlock, I think several solutions can be presented. First and

foremost, eliminating one of the conditions previously listed will result in nullifying the possibility of the

deadlock. In our case we would want to take the deadlock detection and recovery approach as

mentioned by Horner. This technique simply lets the program run until we have a deadlock, stops

execution, and rolls-back to a previous state. My solution to validating the grid space is a simpler version

of Banker’s algorithm. This algorithm is determining if a resource allocation is safe or unsafe before

moving forward. If the verdict is unsafe then the process would be withheld until it is safe. In our current

code we would have the function to at least begin detecting all situations (only two were done) and

have a map of the last functional grid. When a deadlock would be detected we need to first stop the

execution of all threads and redraw the grid based on the last grid space map that was successful. We

should have determined which robot ran into the deadlock, the path they were on, and information

about the other members of the deadlock. Conditionally, the solution would handle alternative pathing

or busy waiting but would largely depend on holding execution and resetting to the last known good

state.

 I did notice that there are limitations to the number of robots in the simulation. In the ballpark

of eight or so, we begin to see the terminal throw errors. One that was common was stack smashing

detected. It seemed to be a buffer overflow error determined by gcc and I was unsure how to resolve

this. I think it is just built into the compiler itself and fixing would require a significant run-around. In the

scope of the simulation there is a limitation with deadlock detection. When doing this project within the

reasonable time scope of when the course took place, I felt a bit rushed to get the deadlock detection

implemented fully. I do not feel confident that testing was thorough enough and that there may

situational bugs where deadlocks are ignored when they should not be. Of course, I only did add two

scenarios to detect it so determining when they should properly happen was difficult.

 My biggest difficulty with this project was certainly the path functionality. When the robot

needed to reorient itself to the correct position. I think what confused me the most was dealing with the

main robot movement function and properly using that when the box needed to be pushed on the y-

axis. In that case I had to call the function twice but run each delta value independently of each other

rather than at the same time. The function was not intended to be used that way so I would not

consider it the cleanest method to reorient the robot. The mutex locking of the grid square was also a

large contributor to confusion. I took a great deal of time trying to determine how it would be possible

for a literal grid square to be locked from other threads. I have only used mutex locks singularly so to

have one in an array allocated to each space was a bit of weird concept to get used to.

 I have to say that through the difficulties, breaks for other studies, and obstacles that have

gotten in my way, I’m both proud and satisfied that I took the time to revisit this course and educate

myself on the important concepts in operating systems. Through my time in study, I’ve not only read

from a fantastic author on the theory behind why operating system design is important, but also

executed them in well-designed projects from an amazing professor that were intended to expose

important programming skills that I did not have before. It is incredibly important that the advantages of

multiprocessing, threading, interprocess communication, synchronization, and scripting are used in the

daily lives of programmers. These are in fact powerful tools that have been used to create strong

applications. While I can never retake the course again, I am reflective on the valuable time I had spent

to truly see and master the importance of operating systems in my work.

